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Abstract 

A division algebra of highest possible dimension is the eight-dimensional Cayley algebra. 
This remarkable property of mathematics suggests an intimate fundamental connection 
between Cayley algebras and descriptions of the physical universe. On this basis, it is 
suggested that Einstein's field equations with the huge A proposed by this author else- 
where be factored by use of such an algebra. This factorization promises to yield Dirac- 
like spinor quantum wave equations. 

1. Introduction 

There is an intimate connection among quadratic forms, symmetric matrices, 
and division algebras (Paige & Swift, 1961). Mendel Sachs has utilized this con- 
nection in conjunction with the symmetry of the metric and stress-energy 
tensors of general relativity (Sachs, 196%72). Sachs has achieved a quaternion 
factorization of Einstein's general relativistic field equations which seems to 
yield the electromagnetic field and to give a derived inertial mass for local 
bodies, in agreement with Mach's principle. A similar quaternion factorization 
process is also essentially what Dirac did in setting up his spinor wave equations 
for the electron. Dirac, in fact, found a quaternion factorization of the quadratic 
form E e _ px 2 _ p y 2  _ pz 2 (Dirac, 1928, 1947; Schiff, 1968; Edmonds, 
1974). 

The suggestion here is to apply a similar factorization procedure to the large 
A field equations proposed by this author (Nickerson, 1975b); 

Guy + Ag .v  . . . .  (87rK/c2)T.v (1) 

Here ~ is Newton's universal gravitational constant, ~ 2/3 x 10 - t°  N m2/kg2; 
c is 3 x 10 s m/sec; and A is proposed to be huge, on the order of c3/tdl, or 
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about  1069 m -2, ~ being Planck's constant. Since, as discussed elsewhere 
(Nickerson, 1975c), the large A theory leads to quantum wave equations, one 
expects that a quaternion factorization of the large A equations will yield 
quantum wave equations of the Dirac form for various elementary "particles". 

The preceding discussion deals with real quaternion factorization. However, 
a remarkable property of division algebras in general, of which complex 
numbers and quaternions are examples, is that one of eight dimensions has the 
largest dimensionality possible (Paige & Swift, 1961, p. 253). "Eight dimen- 
sions" means all elements, i.e., "numbers," of the algebra can be represented 
as linear combinations of eight basis "elements." The Cayley algebras are such 
eight-dimensional algebras (Paige & Swift, 1961, p. 253). One is tempted, then, 
to let the large A field equations be complex, thereby hopefully requiring the 
highest possible dimensionality in the division algebra used to factor them. 
That is, it is suggested here that a Cayley algebra be used to factor the large A 
field equations (I),  where the equations ( t )  are now allowed to be complex. 
One simple way to make them complex is to postulate that A be complex. 

In Sec. 2 we shall examine the intimate connection between quadratic 
forms and division algebras. The paper concludes with a discussion of some 
points of interest. 

2. Division Algebras and the Factorization o f  Quadratic Forms 

Quadratic forms are intimately related to geometry. One of the simplest 
such forms is the Pythagorean form which gives the square of the length in 
Euclidean geometry: t 2 = x 2 + y2 + z 2. In the Riemannian geometries used 
in relativity theory, the square of length is assumed to have the quadratic form 
2;guvxUx v, where ggv is the symmetric metric "tensor," the sum (2;) is over the 
number of dimensions of the geometry, and/l and v in x u or x v index the 
dimension: x 1 is x, x 2 is y, etc. (see any text on general relativity, e.g. Adler 
et al., 1975). • 

We are concerned here with the structure of Riemannian geometries, in 
particular with the metric g~v. Thus, we are concerned with the structure of 
quadratic forms. In this section we shall examine a close connection between 
division algebras and the factorization of such forms. We shall see that the 
simple Pythagorean form itself exemplifies and requires the development of 
higher algebras for its factorization. 

We begin with a one-dimensional quadratic form ax 2, where a is a real 
number. We ask whether this can be factored with real coefficients only. The 
answer is yes, as we have in particular 

ax 2 = (ax )(x ) (2a) 

and we have in general 

0.)22 = (~X)(~[X)  (2b)  

with/3, 3' any real numbers such that t33, = a. Here t3 and 7 are the factorization 
coefficients in Eq. (2b), and a and 1 are the factorization coefficients in Eq. 
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(2a). So, on to two dimensions: We ask whether ax 2 + b x y  + cy  2 can be 
factored with real factorization coefficients if a, b, and c are any three real 
numbers. The answer is no. Consider the special case x 2 + y2. The factorization 
o f x  2 + y2 requires complex algebra, for reasons closely connected to the 
necessity for a complex algebra in finding roots of  the equation x 2 + 1 = 0. 
With complex numbers, we factor x 2 +y2 as (x + iy) (x  - iy). More generally, 
using a complex algebra, we can find complex factorization coefficients for 
the general two-dimensional quadratic form ax 2 + bxy  + cy  2 where a, b, and 
c are allowed to be not only real, but more generally complex. This is all 
closely related to the theorem on the existence of zeros for an arbitrary poly- 
nomial in complex algebra.* 

Now we consider three and four dimensions. Note first that the simple two- 
dimensional form x 2 + y2 which requires complex algebra for factorization is 
just the square of distance in two-dimensional Euclidean geometry. So our 
basic question on factorization of quadratic forms is a basic question of 
geometry. In three dimensions the general quadratic form is 

ax 2 + by  2 + cz  2 + d x y  + eyz  + f x z  (3a) 

where a, b, c, d, e, f w e  take for now to be real numbers. With d = e = f =  0 
and a = b = e = 1, we have the quadratic form which gives the square of distance 
in three dimensions: x 2 + 9  + z2- This form cannot be factored with complex 
algebra alone. The Irish physicist and mathematician W. Hamilton, in looking 
for a mathematical representation for geometric rotations in three dimensions, 
found in the early 1840's an algebra which can indeed factor x 2 +y2 + z 2 in 
particular and Eq. (3a) in general (Tait, 1875; Bork, 1966; Edmonds, 1974; 
see also Schiff, 1968). Hamilton's algebra has four basis elements, 1, i ,], and 
k, as opposed to the two, 1 and i, of complex algebra. Thus, Eq. (3a) can be 
factored as 

ax 2 + by  2 + cz 2 + d x y  + eyz  + f x z  =(onc + ~y + 7z)(Ox + •y + Xz) (3b) 

where a, ~3, 2/, 0, K, and X are "real" linear combinations of Hamilton's four 
basis elements 1, i, ], and k. "Real" here means the coefficients in the linear 
combinations are all real numbers. For example 

a = al  I + a2i + a3j + a4k  (3c) 

where a l ,  a2, a3, a4 are all real numbers. "Things" such as a, 13, 7, etc. are 
called "quaternions," and the algebra we deal with here is called "quaternion 
algebra" (Edmonds, 1974). The real, complex, and quaternion algebras dis- 
cussed here are all called "division algebras" (Paige & Swift, 1961, p. 253). 

Now it turns out that the same quaternion algebra of Hamilton also factors 
the general four-dimensional quadratic form with real coefficients (Sachs, 1967- 
72; Paige & Swift, 1961): 

4 
guvxUx v (4a) 

#,~V=l 

* This  theorem is k n o w n  as " T h e  Fundamen ta l  Theorem of  Algebra." See, for example,  
Paige & Swift (1961),  p. 267. 
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where the guy's are real. It is just such a factorization of the basic Lorentzian 
special relativistic form 

t2  __ X 2 -- y 2  __ Z2 (4b) 

that led Dirac to his spin-½ spinor equations for the electron and positron. 
Dirac actually factored the quadratic form 

F 2 -- C 2 p x  2 -- C2py  2 -- C2pz  2 (4c) 

in his work (Dirac, 1928, 1947; Schiff, 1968; Edmonds, 1974). Those familiar 
with special relativity will recognize Eq. (4b) as the invariant interval, analogous 
to the square of Euclidean distance in three dimensions, and Eq. (4c) as the 
magnitude of the four-vector momentum. (See any special relativity text, e.g., 
Taylor & Wheeler, 1966). Mendel Sachs, in important recent work (Sachs, 
1967-72), has carried out an analogous factorization program on the general 
quadratic (4a), more specifically on the Einstein field equation (1) in "preferred" 
form (Nickerson, 1975b), i.e., with A = 0. Note that, because of the intimate 
relationship between quadratic forms and symmetric matrices (Paige & Swift, 
1961), factorization of the quadratic form leads to a factorization of the sym- 
metric matrix. Since Einstein's field equations involve only symmetric tensors, 
such a factorization of them would seem to be suggested. It is just such a 
program, on the A = 0 equations, that Sachs has undertaken. He has found 
some intriguing and promising results: a possibly unified electromagnetic- 
gravitational field theory, a Machian derivation of mass from the nonlinear 
field equations, and other results including profound implications for elemen- 
tary "particle" theory (Sachs, 1967-72). 

One has seen here, I hope, an intimate connection between the basic quad- 
ratic forms of geometry and the algebras of real, complex, and quaternion 
"numbers." The algebras serve to factor the quadratic forms of one, two, and 
three or four dimensions, respectively. The well-known connection between 
quadratic forms and symmetric matrices then leads to analogous factorization 
of the matrices by these algebras, and in particular to Dirac's spin-½ wave 
equation and to Sachs' more general work on factoring Einstein's "preferred" 
equations. 

To apply the factorization to the "big A" field equations proposed by this 
author elsewhere (Nickerson, 1975b, c) would straight away seem a very inter- 
esting thing to do. One would guess, based on how quantum wave equations 
seem to come from the "big A" theory (Nickerson, 1975c), that such an 
application might yield the Dirac-type quantum equations for elementary 
"particles" as well as Sachs' results, but now quantized, with no assumptions 
other than the three classical principles of the "big A" theory. This is the pro- 
gram proposed here, with a slight, but significant, modification to be discussed 
in Sec. 3. 

3. Discussion 

The modification of the factorization program proposed here is to use an 
eight-dimensional Cayley algebra, with a possibly complex A, as mentioned in 
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the Introduction. This is suggested by the remarkable property that the high- 
est dimension possible for a division algebra is eight (Paige & Swift, t961, 
p. 253). The suggested program, then, is to try to factor the complex "big A" 
field equations with a Cayley algebra, in a manner similar to (Sachs', 1967-72) 
factorization of  Einstein's "preferred" equations with a real quaternion 
algebra. This program is expected to lead to Dirac-like quantum wave equations 
for elementary "particles," as indicated in (Nickerson, 1975c). In these wave 
equations, A - I  plays the role o f  Planck's constant h. 

The eightfold maximum on the dimensionality of  division algebras suggests 
some other fundamental connections. It might be intimately connected with 
the four-dimensionality of  the universe and with the four quantum numbers 
necessary for electrons to meet the requirements of  Pauli's exclusion principle 
(Nickerson, 1975a). It may be that the eight elements of  a Cayley algebra which 
factors Eq. ( i )  are intimately related to the eight generators of  the group 
"SU(3)" and the "eightfold way" of M. Gell-Mann and Y. Neeman (Chew et al., 
1964). Cayley algebras have distinctly different right and left inverses, a prop- 
erty suggestive of  parity breaking and handedness (Atchison, 1974). These 
suggested connections need to be checked out in future investigations. They 
are very speculative at this point, but they are intriguing possibilities, and their 
detailed investigation should teach us a considerable amount about funda- 
mental processes. 
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